GWOU ADMINISTRATIVE RECORD SECTION TITLE: GW-200-202-1.02

Same Same

MORRISON KNUDSEN CORPORATION

MK- FERGUSON GROUP

WELDON SPRING SITE REMEDIAL ACTION PROJECT. 7295 HIGHWAY 94 SOUTH ST. CHARLES, MISSOURI 63304 PHONE: (314) 441-8086

U.S. Department of Energy Weldon Spring Site Remedial Action Project Mr. Stephen H. McCracken ATTN: Project Manager 7295 Highway 94 South

St. Charles, MO 63304

Contract No. DE-AC05-86OR21548 SUBJECT:

RESULTS OF SAMPLING ACTIVITIES FOR TCE IN GROUNDWATER AT THE WELDON SPRING CHEMICAL PLANT

Dear Mr. McCracken:

During workplace monitoring at the CSS Pilot Plant in September 1995, hexane was detected in the headspace of sludge tanks at a concentration of 200 ppm. To determine whether potential hexane contamination of sludge in the raffinate pits might have migrated into groundwater, two monitoring wells near the raffinate pits, MW-2038 and MW-3025 (Figure 1), were sampled in April of 1996 for volatile organic compounds (VOCs). Hexane was not detected, but trichloroethylene (TCE) was measured at 766 ug/l in monitoring well MW-2038 and at 11 ug/l in MW-3025. Additionally, 1,2-Dichloroethene was detected in MW-2038 at 22.7 ug/l.

In the summer and fall of 1996, several thousand drums and other debris were removed from the southeastern corner of Raffinate Pit Oil residues were found in approximately 200 of these drums and these residues were pumped to five Integra tanks. As part of our Waste Management requirements, an oil sample was collected from each tank and analyzed for volatiles by the Toxicity Characteristic Leaching Procedure (TCLP). The results of this sampling showed that high levels of TCE (2,200, 3,400, 4,000, 29,000 and 280,000 ug/kg) were present in the oil samples. The total volume of oil in the five tanks is approximately 1,400 gallons.

As a result of these findings, groundwater, soils, and sludge data from sampling events prior to 1996 were reviewed to determine whether volatiles had been previously detected. In 1987, 30 groundwater wells were sampled for VOCs (Table 1 and Figure 1). Four wells showed low concentrations of TCE ranging from 1.9 to 4.3 ug/1.

Page 2 TCE IN GROUNDWATER AT THE WELDON SPRING SITE

Each detection was an estimated value below the detection limit. From 1988 to 1990, volatiles were also sampled for in nine newly installed wells (Table 1). TCE was detected in only one well (MW-2030) at 7 uq/l.

5.080

TCE was detected in only a few soil samples and in one sludge sample. Of 277 soil samples analyzed for TCE prior to 1995, TCE was detected in seven samples(Table 2). These samples were taken from two locations at an area between Raffinate Pit 3 and Building 301 (Figure 2). Detected TCE in these samples ranged from 5 ug/kg to 4800 ug/kg. Only one sample exceeded 350 ug/kg. Between 1988 and 1990, 101 raffinate pit sludge samples were analyzed for TCE. Of these samples, 26 were from Pit 1, 24 were from Pit 2, 28 were from Pit 3, and 23 were from Pit 4. TCE was detected in one sample from Pit 3 at 23 ug/kg (Table 3). In the Remedial Investigation/Feasibility Study process for the Chemical Plant Operable Unit, TCE (and volatiles in general) was deemed not to be a contaminant of concern due to the infrequency of detection and its low concentrations when detected.

A teleconference was held in June of 1996 between the PMC and Argonne National Laboratory (ANL) to review the implications of the April 1996 groundwater sampling, and to consider further actions for groundwater sampling. It was decided that additional sampling should be conducted to define the extent of volatiles (specifically, TCE and 1,2-Dichloroethene) in groundwater. In June and August of 1996, groundwater monitoring for volatiles was initiated at seven wells in the proximity of the known TCE contamination. These wells surround the raffinate pit area and Frog Pond area. TCE was detected in three wells; 15 ug/l in GW-3025; 48 ug/l in MW-3024; and 9000 ug/l in GW-2038. 1,2-Dichloroethene was reported at 5 ug/l in MW-2032 and 39 ug/l in MW-2038 (Table 4).

Three springs were sampled for volatiles in August and October of 1996. These were Burgermeister Spring (6301, in August) and two springs (5303 and 5304 in October) in the Southeast Drainage (Table 4). These springs were chosen because they represent the only springs where WSSRAP contaminants have been consistently detected. No volatiles were detected in any of these springs.

A site-wide sampling for volatiles in monitoring wells at the chemical plant area was conducted in September and October of 1996. Forty-five monitoring wells were sampled (Table 4). TCE was detected in six wells, with a high concentration of 1050 ug/l in MW-2038. Two of the six detections were estimated values well below the detection limit. 1,2-Dichloroethene was detected in five wells, with a high of 25 ug/l in MW-2037. Three of these detections were estimated values below the detection limit. In general, detections of volatiles were limited to an area south and southeast of Raffinate Pits 3 and 4.

Page 3 TCE IN GROUNDWATER AT THE WELDON SPRING SITE

Information from the 1996 groundwater sampling for volatiles was presented to the EPA and MDNR at a Groundwater Operable Unit Remedial Investigation/Baseline Risk Assessment comment review meeting held October 24 and 25, 1996. The EPA requested that the DOE try to identify the TCE source and extent as part of the groundwater operable unit activities.

A meeting was held October 30, 1996, among the PMC, DOE, and ANL to discuss the activities necessary to determine the source and extent of volatiles, primarily TCE, in groundwater. Several sampling activities were planned, including additional groundwater monitoring and sludge and soil sampling.

Monthly groundwater monitoring of seven wells at the chemical plant area (MW-2013, 2032, 2037, 2038, 3024, 3025, and 4001) began in November 1996 (November results are in Table 4). The monthly sampling of these wells and Springs 6301, 5303, and 5304 will continue throughout 1997. Five more wells will be added to the monthly monitoring beginning in February (MW-4004, 4005, 4007, MWS-4 and 21). Sampling of MWS-4 and MWS-21 will require access permission from the Army.

In November and December of 1996, additional sampling was conducted on soils and sludges from the raffinate pit area. An opportunity was available to sample sludges from Raffinate Pit 3 as part of the collection of sludge samples for biodenitrification bench testing. This sampling was completed in November 1996. Sludges were collected from six locations in Raffinate Pit 3, and from three depth intervals at each location; 0 to 5 ft.; 5 to 10 ft; and 10 to 15 ft. A photoionization detector (PID) was used to scan the sludge samples to qualitatively detect any volatiles in the samples. Results of the sludge sampling are shown in Table 5. TCE was detected in only one sample, at an estimated value of 12 ug/kg (below the detection limit of 62 ug/kg).

Soil characterization sampling in Raffinate Pits 3 and 4 was planned as part of the Engineering Soil Sampling Plan for Characterization of the Weldon Spring Raffinate Pits (DOE/OR/21548-653, October 1996). An addendum to this plan was prepared in November 1996, to include VOC analyses of samples from Pits 3 and 4. Samples will be taken from the first foot of soil below the sludge, and PID scans will be conducted on all deeper soil samples collected. Any samples that indicate VOCs via PID readings will also be analyzed for VOCs. This plan and addendum also includes three borings just south of the Pit 3 berm.

Four of the 22 scheduled Pit 4 borings have already been sampled. PID scans of the deeper soil samples from these borings did not show detectable VOC readings; therefore, the samples were not analyzed for volatiles. The results from the first intervals that were sent off for laboratory analyses are not back yet. Two of these borings were in the area of the drum removals, although not through the stained soil.

MK-FERGUSON COMPANY A MORRISON KNUDSEN COMPANY

Page 4 TCE IN GROUNDWATER AT THE WELDON SPRING SITE

The three borings south of Raffinate Pit 3 were completed in December 1996. Neither TCE nor 1,2-Dichloroethene were detected in any of these soil samples (Table 6). Their locations are shown on Figure 3.

Based upon the chemical behavior of TCE, the low concentrations found in the groundwater near the raffinate pits, the TCE detected in drum oils, and the infrequent detection of TCE in soil and sludges of the raffinate pit area, we believe that the source of TCE that contaminated groundwater was the waste drums in Raffinate Pit 4. Since the drums have already been removed from the pit, the primary source has been remediated. Any contamination remaining in the sludges and soils is scheduled for removal as part of raffinate pit remediation. Expedited additional sampling of soils in the Raffinate Pit 4 drum area, an area that currently has a heavy oil stain, is expected to be completed by the end of March 1997. This sampling will focus on determining whether any significant area of volatiles contaminated soil exists. We feel that except to the southwest, the nature and extent of TCE contamination in groundwater has been defined. Current sampling plans will close any data gaps to the southwest. The source of the TCE has been identified as a migration of TCE contaminated oil leaking from drums in Raffinate Pit 4. It is our intention to continue monitoring groundwater in the vicinity of the raffinate pits and at Springs 6301, 5303, and 5304 until the end of the Any future monitoring will depend upon the results of the groundwater operable unit RI/FS/BRA. Although not expected, it is understood that a discovery of a significant area of TCE contaminated soil would require that additional handling and disposal options be examined.

If you have any questions, please contact Julie Reitinger at ext. 3522.

Sincerely,

James R. Powers

Project Director

JRP/jmr/kmp

Enclosure: as stated

cc: Pamela Thompson

Table 1: Summary of TCE Groundwater Sample Analyses Prior to 1996

Table 1: Summary of	TOE GROUNDWATER	STANDED WITTERS
MONITORING LOCATION	DATE SAMPLED	TCE (ug/1)
ми-2001	1987	ND
MW-2002	1987	ND
MW-2003	1987	ND
MW-2004	1987	ND
MW-2005	1987	ND
MW-2006	1987	ND
MW-2007	1987	ND
MW-2008	1987	ND
MW-2009	1987	ND
MW-2010	1987	ND .
MW-2011	1987	ND
MW-2012	1987	ND
MW-2013	1987	(1.90)
MW-2014	1987	ND
MW-2015	1987	ND
MW-2016	1987	ND
MW-2017	1987	ND
MW-2018	1987	ND
MW-2020	1987	ND
MW-2030	1989	7.00
MW-2031	1989	ND
MW-2032	1989	ND
MW-2033	1989	ND
MW-2034	1989	ND
MW-3002	1987	ND
MW-3003	1987	ND
MW-3007	1987	(4.30)
MW-3008	1987 1990	ND ND
MM-3009	1987	(2.20)
MW-3010	1987	ND
MW-3013	1987	ND .
MW-3022	1989	, מא
MW-3023	1989	ND
MW-4001	1987	(2.70)

MONITORING LOCATION	DATE SAMPLED	TCE (ug/1)
MW-4003	1987	ND
MW-4006	1987	NÐ
MW-4012	1988	ND
MW-4019	1987	ND
MW-4020	1990	ND

Parentheses indicate estimated value below quantification limit. Detection limits 5 ug/l (1987) to 10 ug/l (1989).

Table 2 : Summary of Pre-1995 Soil TCE Analyses

Sample ID	Date	TCE Value	Detection	Units	Northing	Easting	
	Sampled		Limit		Location	Location	
SO-287218-01	11-Nov-87	ND	5	UG/KG	1042121.062	756184.219	
SO-287218-02	11-Nov-87	ND	5	UG/KG	1042121.062	2 756184.219	
SO-287218-03	11-Nov-87	ND	5	UG/KG	1042121.062	756184.219	
50-287218-04	11-Nov-87	ND	5	UG/ KG	1042121.062	756184.219	
so-288005-01	23-Aug-88	ND	- 5	UG/KG	1042368.816	753648.463	
SO-288005-02	23-Aug-88	ND	5	UG/KG	1042368.816	753648.463	
50-288007-01	24-Aug-88	ND	5	UG/KG	1042284.220	753489.287	
so-288007-02	24-Aug-88	ND	5	UG/KG	1042284.220	753489.287	
30-288008-01	24-Aug-88	ND	5	ne\ke	1042160.252	753592.856	
SO-288008-02	24-Aug-88	ND	5	ug/kg	1042160.252	753592.856	
so-288009-01	24-Aug-88	ND	5	UG/KG	1042202.787	753956.538	
so-288009-02	24-Aug-88	ND	5	UG/KG	1042202.787	753956.538	
\$0~288010-01	24-Aug-88	ND	5 .	UG/KG	1042350.684	753218. 4 23	
80-288010-02	24-Aug-88	ND	5	UG/KG	1042350.684	753218.423	
50-200013-01	25-Aug-88	ND	5	UG/KG	1041359.732	753729.368	
SO-289017-01	26-Aug-88	ND	5	UG/KG	1041989.321	754352.634	
30-288017-02	26-Aug-88	ND	5	UG/KG	1041989.321	754352.634	
SO-288018-01	26-Aug-88	ND	5	UG/KG	1041569.507	754183.180	
SO-288019-01	26-Aug-88	ND	5	UG/KG	1041602.918	753826.297	
30-288019-02	26-Aug-88	ND .	5	UG/KG	1041602.818	753826.297	
so-288019-03	26-Aug-88	ND	5	UG/KG	1041602.818	753826.297	
SO-288021-01	26-Aug-88	ND	5	UG/KG	1041804.476	754253.017	
80-288021-02	26-Aug-88	ND	5	UG/KG	1041804.476	754253.017	
30-288023-01	26-Aug-88	ND	5	UG/KG	1041531.663	753958.329	
SO-288023-02	26-Aug-88	ND	5	UG/KG	1041531.663	753958.329	
so-288023-03	26-Aug-88	ND	5	UG/KG	1041531.663	753958.329	
SO-288024-01	26-Aug-88	ND	5	UG/KG	1041312.927	753942.675	
SO-288024-02	26-Aug-88	ND	5	UG/KG	1041312.927	753942.675	
SO-288024-03	26-Aug-88	ND	5	UG/KG	1041312.927	753942.675	
30-288024-04	26-Aug-88	ND	. 5	UG/KG	1041312.927	753942.675	
SO-288025-01	26-Aug-88	ND	5	UG/KG	1041501.145	754078.186	
30-288025-02	26-Aug-88	ND	5	UG/KG	1041501.145	754078.186	
SO-288025-03	26-Aug-88	ΝĎ	5	UG/KG	1041501.145	754078.186	
SO-288026-01	26-Aug-88	ИD	5	UG/KG	1041463.249	754000.970	

Sample ID	Date	TCE Value	Detection	Units	Northing	Easting	
	Sampled		Limit		Location	Location	
so-288026-02	26-Aug-88	ИĎ	5	UG/KG	1041463,249	754000.970	
\$0-288026-03	26-Aug-88	ND	5	UG/KG	1041463.249	754000.970	
SO-288028-01	26-Aug-88	ND	5	UG/KG	1041702.962	754062.006	
SO-288028-02	26-Aug-88	ND	5	UG/KG	1041702.962	754062.006	
SO-288028-03	26-Aug-88	ND	5	UG/KG	1041702.962	754062.006	
SO-288029-01	26-Aug-88	ND	5	UG/KG	1041493.081	753903.461	
SO-288029-02	26 - Aug-88	ND	5	UG/KG	1041493.081	753903.461	
SO-288029-03	26-Aug-88	ND	5	UG/KG	1041493.081	753903.461	
SO-288030-01	29-Aug-88	ND	5	UG/KG	1041847.011	754616.699	
SO-288031-01	29-Aug-88	ND	5	UG/KG	1042111.655	755031.928	
SO-288032-01	29-Aug-88	NĐ	5	UG/KG	1041904.462	754931.626	
50-288034-01	29-Aug-88	ND	5	UG/KG	1042116.082	754960.484	
SO-288034-02	29-Aug-88	ИD	5	UG/KG	1042116.082	754960.484	
SO-288034-03	29-Aug-88	ND	5	UG/KG	1042116.082	754960.484	
SO-288035-01	29-Aug-88	NĐ	5	UG/KG	1042114.554	754499,636	
SO-288035-02	29-Aug-88	ND	5 .	UG/KG	1042114.554	754499.636	
50-288036-01	29-Aug-88	ND	5	UG/KG	1041961.280	755121.268	
SO-288036-02	29-Aug-88	ND	5	UG/KG	1041961.280	755121.268	
SO-288036-03	29-Aug-88	ND	. 5	UG/KG	1041961.280	755121.268	
SO-288037-01	29-Aug-88	ND	5	UG/KG	1042054.045	755159.902	
so-288037-02	29-Aug-88	ND	.5	UG/KG	1042054.045	755159.902	
SO-288037-03	. 29-Aug-88	МĎ	5	UG/KG	1042054.045	755159.902	
SO-288038-01	29-Aug-88	ND	5	UG/KG	1041626.958	754498.107	
50-288039-01	29-Aug-88	ND	5	ΰG/KG	1042070.226	755361.719	
so-288039-02	29-Aug-88	ND	5	UG/KG	1042070.226	755361.719	
so-288039-03	29-Aug-88	ND	5	UG/KG	1042070.226	755361.719	
SO-288040-01	29-Aug-88	ND	5	UG/KG	1042061.477	755209.341	
SO-288040-02	29-Aug-88	ND	5	UG/KG	1042061.477	755209.341	
50-288040-03	29-Aug-88	ND	. 5	UG/KG	1042061.477	755209.341	
SO-288041-01	30-Aug-88	ND	. 5	UG/KG	1042402.020	755483.737	
SO-288042-01	30-Aug-88	ND	5	UG/KG	1042899.104	755467.662	
SO-288042-02	30-Aug-88	ND	5	UG/KG	1042899.104	755467.662	
SO-288043-01	30-Aug-88	ИĎ	5	UG/KG	1042479.895	755497.310	
SO-288043-02	30-Aug-88	ND	5	UG/KG	1042479.895	755497.310	
SO-288044-01	30-Aug-88	ND	5	UG/KG	1042187.238	754828.451	

Sample ID	Date	TCE Value	Detection	Units	Northing	Easting	
	Sampled	- 	Limit		Location	Location	
\$0-288044-02	30-Aug-88	ND	5	ug/kg	1042187.238	754828.451	
80-288045-01	30-Aug-88	ND	5	UG/KG	1043443.203	754647.745	
so-2880 45 -02	30-Aug-88	ND	5	UG/KG	1043443.203	754647.745	
30-288045-02	15-Sep-88	ND	5	UG/KG	0.000	0.000	
SO-288045-03	15-Sep-88	ND	5	UG/KG	1043443.203	754647.745	
SO-288046-01	30-Aug-88	ND	5	UG/KG	1042626.237	755320.608	
SO-288046-02	30-Aug-88	МĎ	5	UG/KG	1042626.237	755320.608	
SO-288047-01	30-Aug-88	ND	5	UG/KG	1042416.304	755309.697	
50-288047-02	30-Aug-88	ИD	5	UG/KG	1042416.304	755309.697	
50-288047-03	30-Aug-88	ND	5	ŪG/KG	1042416.304	755309.697	
50-288048-01	30-Aug-88	ND	5	UG/KG	1042167.735	755391 .552	
SO-288049-02	30-Aug-88	ND	5	UG/KG	1042186.077	755231.057	
SO-288049-03	30-Aug-88	ND	5	UG/KG	1042186.077	755231.057	
50-288049-04	30-Aug-88	ND	5	UG/KG	1042186.077	755231.057	
50-288049-05	30-Aug-88	ND	5	UG/KG	1042186.077	755231.057	
50-288052-01	31-Aug-88	ND	5	UG/KG	1042854.988	755739.211	
50-288052-02	31-Aug-88	ND	5	UG/KG	1042854.988	755739.211	
so-288054-01	31-Aug-88	ND	5	UG/KG	1042671.407	755890. 165	
so-288054-02	31-Aug-86	ND	5	UG/KG	1042671.407	755890.165	
so-288057-01	31-Aug-88	ND	5	UG/KG	1043146.829	755851.056	
50-288057-02	31-Aug-88	ND	5	UG/KG	1043146.829	755851.056	
50-288059-01	31-Aug-88	ND	5	UG/KG	1043059.492	755701.271	
SO-288059-02	31-Aug-88	ND	5	UG/KG	1043059.492	755701.271	
SO-288059-03	31-Aug-88	ND	5	UG/KG	1043059.492	755701.271	
SO-288065-01	01- Se p-88	ND	5	'UG/KG	1043620.880	755856.644	
SO-288066-01	01-Sep-88	ND	5	UG/KG	1043400.826	755738.051	
50-288066-02	01-Sep-88	ND	5	UG/KG	1043400.826	755738.051	
50-288067-01	01-Sep-88	ND	5	UG/KG	1043107.904	755807.362	
50-288067-02	01-Sep-88	ND	5	UG/KG	1043107.904	755807.362	
30-288067-03	01-Sep-88	ND	5	UG/KG	1043107.904	755807.362	
50-288070-01	01-Sep-88	ND	5	UG/KG	1043072.326	755873.378	
SO-288070-02	01-Sep-88	ND	5	ug/KG	1043072.326	755873.378	
SO-288070-03	01-Sep-88	ND	5	UG/KG	1043072.326	755873.378	
50-288072-01	02-Sep-88	ND	5	UG/KG	1043638.010	755297.945	
SO-288072-02	02- Sep- 88	ND	5	UG/KG	1043638.010	755297.945	

Sample ID	Date	TCE	Detection	Units	Northing	Easting	
	Sampled	Value	Limit		Location	Location	
so-288072-03	02-Sep-88	ND	5	UG/KG	1043638.010	755297.945	
SO-288078-01	07-Sep-88	ND	5	UG/KG	1043519.551	755148.914	
SO-288078-02	07-Sep-88	ND	5	UG/KG	1043519.551	755148.914	
SO-288078-03	07-Sep-88	₩D	5	UG/KG	1043519.551	755148.914	
SO-288079-01	07-Sep-88	ND	5	UG/RG	1043360.347	755307.326	
SO-288079-02	07-Sep-88	ND	5	ug/kg	1043360.347	755307.326	
SO-288079-03	07-Sep-88	ND	5	UG/KG	1043360.347	755307.326	
SO-288080-01	07-Sep-88	ND	5	UG/KĢ	1043580.559	754983.017	
SO-288083-01	07-Sep-88	ND	5	UG/KG	1043858.064	755416.536	
SO-288083 - 02	07-Sep-88	ND	5	UG/KG	1043858.064	755416.536	
50-288087-01	07-Sep-88	NID	5	UG/KG	1044084.970	755311.649	
30-288089-01	08-Sep-88	ND	5	UG/KG	1043136.288	755027.554	
SO-288092-01	08-Sep-88	ND	5	UG/KG	1042966.992	755004.469	
50-288092-02	08-Sep-88	ND	5	UG/KG	1042966.992	755004.469	
50-288092-03	08-Sep-88	NID	5	UG/KG	1042956.992	755004.469	
50-288095-01	08-Sep-88	ND	5	UG/KG	1043798.979	753987.585	
SO-288096-01	08-Sep-88	ND	5	UG/KG	1043057.069	754984.862	
50-288096-02	08-Sep-88	ND	5	UG/KG	1043057.069	754984.862	
SO-288096-03	09-Sep-88	ND	5	UG/KG	1043057.069	754984.862	
50-288099-01	09-Sep-88	ND	5	UG/KG	1043406.361	755411.634	
SO-288100-01	09-Sep+88	ND	5	UG/KG	1043401.617	755420.437	
30-288101-01	09-Sep-88	ND	5	UG/KG	1042969.048	754937 .425	
50-288101-02	09-Sep-00	ND	5	UG/KG	1042969.048	754937.425	
\$0-288101-03	09-Sep-88	ND	5	UG/KG	1042969.048	754937 .425	
SO-288102-01	09-Sep-88	ND	5	UG/KG	1043515.413	755356.819	
50-288102-02	09-Sep-88	ND	5	UG/KG	1043515.413	755356.819	
SO-288102-03	09-Sep-88	ND	5	UG/KG	1043515.413	755356.819	
SO-288103-01	09-Sep-88	ND	5	υg/kg	1043151.836	755104.086	
50-288103-02	09-5ep-88	NĎ	5	UG/KG	1043151.836	755104.086	
SO-288104-01	09-Sep-88	ИĎ	5	UG/KG	1043213.451	755137.291	
SO-288104-02	09-Sep-88	ND	5	UG/KG	1043213.451	755137.291	
30-288106-01	12-Sep-88	ND	5	UG/KG	1043228.209	755531.438	
SO-288106-02	12- S ep-88	NĐ	5	UG/KG	1043228.209	755531.438	
SO-288107-01	12-Sep-88	ND	5	UG/KG	1043298.626	755569.388	
so-288107-02	12~Sep-88	ND	5	UG/KG	1043298.626	755569.388	

Sample ID	Date	TCE Value	Detection	Units	Northing	Easting	
	Sampled		Limit		Location	Location	
80-288107-03	12-Sep-88	ND	5	UG/KG	1043298.626	755569.388	
50-200100-01	12-Sep-88	ND.	5	UG/KG	1043243.758	755607.969	
50-288108-02	12-Sep-88	ND	5	ug/kg	1043243.758	755607.969	
SO-288108-03	12-Sep-88	ND	5	UG/KG	1043243.758	755607.969	
50-288109-01	12-Sep-88	ND	5	UG/KG	1043140.583	755325.194	
SO-288109-02	12-Sep-88	ND	5	UG/KG	1043140.583	755325.194	
50-288109-03	12-Sep-88	ЙD	. 5	UG/KG	1043140.583	755325.194	
SO-288110-01	12-Sep-88	ND	5	UG/KG	1043197.165	755230.742	
SO-288111-01	12-Sep-88	ND	5	UG/KG	1043254.722	755250.402	
SO-288112-01	12-Sep-88	ND	5	UG/KG	1043213.399	755284.926	
30-288112-02	12-Sep-68	ND	5	UG/KG	1043213,399	755284.926	
SO-288116-01	13-Sep-88	ИD	5	UG/KG	1043053.880	755380.694	
50-288117-01	13-Sep-88	ND	5	UG/KG	1042738.346	755239.043	
SO-288117-02	13-Sep-88	ND	5	UG/KG	1042738.346	755239.043	
50-288118-02	12-Sep-88	DN	5	UG/KG	1043139.608	755211.082	
SO-288118-03	12-Sep-88	ND	5	UG/KG	1043139.608	755211.082	
SO-288122-01	13-Sep-88	סא	5 .	UG/KG	1042863.422	754880.500	
SO-288123-01	14-Sep-88	ND	5	UG/KG	1042832.377	754579.804	
SO-288124-01	14-Sep-88	ND	5	UG/KG	1042474.757	754716.475	
SO-288124-02	14-Sep-88	ND	5	UG/KG	1042474.757	754716.475	
SO-200125-01	14-Sep-88	ND	5	UG/KG	1042348.838	754591.822	
so-288125-02	14-Sep-88	ND	5	UG/KG	1042348.836	754591.822	
SQ-288126-01	14-Sep-88	ND	5	UG/KG	1042595.194	755019.912	
SO-288127-01	14-Sep-88	4800.0	5	UG/KG	1042436.860	754639.259	
SO-288127-02	13~Sep-88	320.00	5	UG/KG	1042436.860	754639.259	
SO-288127-03	13-Sep-88	30.00	5	UG/KG	1042436.860	754639.259	
SO-288128-01	14-Sep-88	ND	5	UG/KG	1042637.360	754520.139	
SO-288128-02	14-Sep-88	ND	5	UG/KG	1042637.360	754520.139	
SO-288129-01	14-Sep-88	ДТĄ	5	UG/KG	1042414.407	754933.840	
SO-288130-01	14-Sep-88	ND	5	UG/KG	1043359.241	754613.854	
SO-200131-01	14-Sep-88	ND	5	UG/KG	1042652.856		
SO-288131-02	14-Sep-88	ND	5	UG/KG	0.000 0.000		
SO-288131-03	14-Sep-88	ND	5	UG/KG	1042652.856	754744.304	
SO-288132-01	14-Sep-88	ND	5	UG/KG	1042478.446	754815.011	
SO-288132-02	14-Sep-88	ND	5	UG/KG	1042478.446	754815.011	

Sample ID	Date	TCE Value	Detection	Units	Northing	Easting
	Sampled	,	<u>Limi</u> t		Location	Location
so-288132-03	14-Sep-88	ND	5	UG/KG	1042478.446	754815.011
SO-288134-01	15-Sep-88	ND	5	UG/KG	1043337.789	754000.286
SO-288134-02	15-Sep-88	ND	5	UG/KG	1043337.789	754000.286
30-288135-01	15-Sep-88	ND	5	UG/KG	1043613.556	753615.048
30-288135-02	15-Sep-88	ND	. 5	UG/KG	1043613.556	753615.048
SO-288136-01	15-Sep-99	ND	5	UG/KG	1043462.496	753726.734
50-288137-01	15-Sep-88	ND	5	UG/KG	1043843.782	753693.688
SO-288137-02	15-Sep-88	ИD	5	UG/KG	1043843.782	753693.688
50-288138-01	15-Sep-88	ND	5	UG/KG	1043415.059	7 53814.7 56
50-288139-01	15-Sep-88	ND	5	θG/KG	1043157.583	754187.135
SO-288139-02	15-Sep-88	ND	5	UG/KG	1043157.583	754187.135
50-288139-03	15-Sep-88	ДИ	5	UG/KG	1043157.583	754187.135
50-288141-01	15-Sep-88	ND	5	UG/KG	1043100.606	754440.394
SO-288141-02	15-Sep-88	ND	5	UG/KG	1043100,606	754440.394
50-288145-01	16-Sep-88	ИD	\$	UG/KG	1043826.757	753957.119
50-288145-02	16-Sep-88	ND	5	UG/KG	1043826.757	753957.119
SO-288148-01	16-Sep-88	מא	5	UG/KG	1043082.684	755316.708
SO-288157-01	20-Sep-88	ND	5	UG/KG	1044058.512	753548.162
50-288157-02	20-Sep-88	ŅD	5	UG/KG	1044058.512	753546.162
30-288159-01	20-Sep-88	ND	5	UG/KG	1043424.125	753081.331
SO-288160-01	20-Sep-88	ND	5	UG/KG	1043132.916	753094.772
50-288161-01	20-Sep-88	ND	5	UG/KG	1044314.116	753674.555
SO-288161-02	20-Sep-88	ND	5	UG/KG	1044314.116	753674.555
SO-288163-01	20-Sep-88	ИĎ	5	UG/KG	1043521.582	753258.798
SO-288169-01	21-Sep-88	ND	5	UG/KG	1043619.458	754152.084
50-288170-01	21-Sep-88	ND	5	UG/KG	1043875.194	754857.837
30-288171-01	21-Sep-88	ND	5	UG/KG	1044095.247	754976.430
30-288172-01	22-Sep-88	ND	5	UG/KG	1044000.850	753823.770
50-288172-02	22-Sep-88	ND	5	UG/KG	1044000.850	753823.770
SO-288172-03	22-Sep-88	ND	5	UG/KG	1044000.850	753823.770
SO-288174-01	22-Sep-88	ND	5	UG/KG	1044349.563	753977.623
30-288174-02	22-Sep-88	ND	5	UG/KG	1044349.563	753977.623
SO-288177-01	23-Ѕер-88	ND	5	UG/KG	1042351.738	754059.529
SO-288177-02	23-Sep-88	ND	5	UG/KG	1042351.738	754059.529
50-288178-01	23-Sep-88	ИD	5	UG/KG	1042581.279	754160.516

· Sample ID	Date	TCE.	Detection	Units	Northing	Easting
•	Sampled	70.1.4	Limit		Location	Location
\$0-288178-02	23-Sep-88	ND	5	ug/kg	1042581.279	754160.516
50-288184-01	23-Sep-88	ND	5	UG/KG	1044861.562	753912.793
SO-288185-01	23-Sep-88	ND	5	UG/KG	1042774.927	754264.878
SO-288185-02	23-Sep-88	ND	5	UG/KĢ	1042774.927	754264.878
SO-288185-03	23-Sep-88	ND	5	UG/KG	1042774.927	754264.878
so-288186-01	23-Sep-88	ND	5	UG/KG	1043561.796	754427.691
50-288187-01	23-Sep-88	ND	5	UG/KG	1044345.872	754827.531
SO-288189-01	26-Sep-88	ND	5	UG/KĢ	1044609.462	754401.654
50-288191-01	26-Sep-88	ND	5	UG/KG	1044806.800	753656.108
SO-288191-02	26-Sep-88	ND	5	UG/KG	1044806.800	753656.100
50-288198-01	27-Sep-88	ND	5	UG/KG	1042424.736	756347.876
SO-288199-01	27-Sep-88	NĐ	5	UG/KG	1044113.169	754100.115
50-288200-01	27-Sep-88	ND	5	UG/KG	1044569.616	754096.215
50-288200-02	27-Sep-88	ND	5	UG/KG	1044569.616	754096.215
50-288201-01	27-Sep-88	· ND	5	UG/KG	1042143.067	756196.078
so-288202-01	27-Sep-88	מא	5	UG/KG	1042389.054	755760.715
50-288203-01	27-Sep-88	ND	55	UG/KG	1044586.746	753537.516
50-288203-02	27-Sep-88	ND	57	ng/kg	1044586.746	753537.516
SO-288205-01	28-Sep-88	ND	5	UG/KG	1042932.678	756269.500
50-288205-02	28-Sep-88	ND	5	UG/KG	1042932.678	756269.500
50-288206-01	28-Sep-88	ND	5	UG/KG	1042632.035	756152.912
50-288207-01	28-Sep-88	ДИ	5	UG/KG	1043163.642	756178.159
50-288207-02	28-Sep-88	ND	5)	UG/KG	1043163.642	756178.159
SQ-288221-01	30-Sep-88	ND	5	UG/KG	1043875.985	754540.222
SO-288221-02	30-Sep-88	ND	. 5	QG/KG	1043875.985	754540.222
50-288226-01	03-Oct-88	ND	53	UG/KG	1044847.121	754529.735
50-288227-01	03-Oct-88	ND	5	UG/KG	1044667.387	755284.769
SO-288229-01	03-Oct-88	ND	5	UG/KG	1044332.432	754536.322
SO-288229-02	03-Oct-88	MD	5	UG/KG	1044332.432	754536.322
SO-288232-01	03-Oct-88	ND	5	UG/KG	1044112.378	754417.730
50-288233-01	04-Oct-88	ND	5	UG/KG	1044904.571	754844.662
50-288234-01	04-Oct-88	ND	5	UG/KG	1044349.033	755 45 3.959
30-288236-01	04-Oct-88	ND	5	UG/KG	1044609.936	754969.841
so-268237-01	04-Oct-88	ND	5	UG/KG	1043383.695	756296.750
SO-288238-01	04-Oct-88	ND	5	UG/KG	1044111.850	755894.067

Sample ID	Date	TCE Value	Detection	Units	Northing	Resting	
	Sampled		Limit		Location	Location	
\$0-288239-01	04-Oct-88	ND	5	UG/KG	1043561.847	756176.947	
\$0~288240-01	05-Oct-88	63.00	5	UG/KG	1042583.334	755041.917	
SO-288240-02	05-Oct-88	250.00	5	UG/KG	1042583.334	755041.917	
SO-288240-03	05-Oct-88	29.00	5	UG/KG	1042583.334	755041.917	
SO-268241-01	05-Oct-88	5.00	5	UG/KG	1042164.836	755923.844	
SO-290005-01	23-Jul-90	ND	6.00	UG/KG	1042479.895	755497.310	
so-290006-01	23-Jul-90	ND	5.00	UG/KG	1043228.209	755531.438	
SO-290006-02	23-Jul-90	ND	5.00	UG/KG	1043228.209	755531.438	
SO-290007-01	23-Jul-90	ND	30	UG/KG	1043243.758	755607.969	
\$0-290007-02	23-Jul-90	ND	31	UG/KG	1043243.758	755607.969	
50-290009-01	23-Ju1-90	ND	6.00	UG/KG	1041961.280	755121.268	
SO-290010-01	23-Jul-90	מא	6.00	UG/KG	1042061.477	755209.341	
50-290012-01	25-Jul-90	ND	5.00	UG/KG	1042969.048	754937.425	
50-290013-01	24-Jul-90	ND	7.00	UG/KG	1043213.451	755137.291	
50-290014-01	25-Jul-90	ND	14.0	UG/KG	1041463.249	754000.970	
SO-290015-01	24-Jul-90	ND	6.00	UG/KG	1043139.608	755211.082	
SO-290015-02	24-Jul-90	ND	7.00	UG/KG	1043139.608	755211.082	
so-488167-01	20-Sep-88	ND	5	UG/KG	1042880.342	753015.446	
SO-488168-01	20-Sep-88	ND	5	UG/KG	1042762.541	752917.885	
so-488168-02	20-Sep-88	ND	55	UG/KG	1042762.541	752917.885	
SO-194016-02	25-0ct-94	ND	12.0	UG/KG	1003919.130	731921	
\$O-194024-02	14-Jul-94	ND	13	UG/KG	1028155.440	748612	
SO-194031-01	29-Jul-94	מא	13.0	UG/KG	1028222.690	747042	
SO-194033-01	25-Jul-94	ND	12.0	UG/KG	1028187.630	747630	
50-194034-02	27-Jul-94	מא	13	ng/kg	1028209.190	747848	
50-194035-03	26-Ju1-94	ND	66.0	UG/KG	1028165.810	748014	
SO-194037-01	20-Jul-94	ND	15	UG/KG	1028384.690	748444.380	
50-194037-02	20-Jul-94	ND	13	UG/KG	1028384.690	748444.380	
SO-194037-03	20-Jul-94	ND	13	UG/KG	1028384.690	749444.380	
50-194037-04	20-Jul-94	ND	13	UG/KG	1028384.690	748444.380	
SO-194038-02	21-Jul-94	ND	13.0	UG/KG	1028402.190	748293.560	
SO-194038-04	21-Jul-94	ND	14.0	UG/KG	1028402.190	748293.560	
SO-194041	19-Jul-94	ND	11	UG/KG	1028665.130	740703.440	

TABLE 3: Summary of Raffinate Pit Sludge TCE Pre-1996 Analyses

TABLE 3: Summary		Pit Sludge TCE P	re-1996 Ana.	LYses	
Sample ID *	Raffinate Pit	Date Sampled	TCE Value	Detection Limit	Units
SD-3304-0608-V	3	27-Jul-88	ND	5	UG/KG
SD-3305-0204-V	3	27-Jul-88	ND	5	UG/KG
SD-3305-0810-V	3	27-Jul-88	ND	5	UG/KG
SD-3306-0204-V	. 3	28-Jul-88	ND	5	UG/KG
SD-3303-0002-V	3	29-Jul-88	ND	5	UG/KG
sp-3303-0608-V	3	29-Jul-88	ND	5	UG/KG
SD-3309-0002-AB	3	02-Aug-88	ND	5	ug/kg
SD-3309-0406-V	3	02-Aug-88	ND	5	UG/KG
SD-3307-0204-V	3	03-Aug-88	ND	5	UG/KG
SD-3307-0608-V	3	03-Aug-88	ND	5	UG/KG
SD-3308-0002-V	3	03-Aug-88	ND	5	UG/KG
SD-3308-0406-V	3	03-Aug-88	ND	5	UG/KG
SD-3309-0810-V	3	03-Aug-88	ND	5	UG/KG
SD-3312-0002-V	3	04-Aug-88	ND	5	UG/KG
SD-3312-0810-V	3	04-Aug-88	ND	5	UG/KG
sD-3313-0204-V	3	04-Aug-88	ND	5	UG/KG
SD-3411-0002-V	4	16-Aug-88	ND	5	UG/KG
SD-3413-0002-V	4	16-Aug-88	ND	5	UG/KG
SD-3405-0002-V	4	17-Aug-88	ND	5	UG/KG
SD-3415-0002-V	4	17-Aug-88	ND	5	UG/KG
sD-3407-0002-V	4	18-Aug-88	ND	5	UG/KG
SD-3416-0002-V	4	18-Aug-88	ND	5	UG/KG
SD-3406-0002-V	4	24-Aug-88	ND DK	5	UG/KG
SD-3406-0204-V	4	24-Aug-88	ND	5	UG/KG
SD-3408-0002-V	4	25-Aug-88	ND	5	UG/KG
sp-3409-0002-V	4	25-Aug-88	ND	5	ug/KG
sD-3403-0002-V	4	26-Aug-88	ND	5 .	UG/KG
SD-3404-0002-V	4	26-Aug-88	ND	5	UG/KG
SD-3410-0002-V	4	26-Aug-88	ND	5	UG/KG
SD-3410-0204-V	4	26-Aug-88	ND	5	UG/KG
SD-3412-0002-V	4	26-Aug-88	ND	5	UG/KG
SD-3414-0002-V	4	26-Aug-88	ND	5	UG/KG
SD-3417-0002-V	4	26-Aug-88	ND	5 .	UG/KG
SD-3101-0002-V	1	12-Sep-88	ND	5	UG/KG
SD-3101-0204-V	1	12-Sep-88	ND	5	UG/KG

Sample ID *	Raffinate Pit	Date Sampled	TCE Value	Detection Limit	Units
3D-3101-0406 - V	1	12-Sep-88	ND	5	ŲG/KG
SD-3101-0608-V	1	12-Sep-08	ND ·	5	UG/KG
SD-3101-0810-V	1	12-Sep-88	ND	5	UG/KG
SD-3102-0204-V	1	12-Sep-88	ND	5	UG/KG
SD-3102-0406-V	1	12-Sep-88	ND	5	UG/KG
SD-3102-0608-V	1	12-Sep-88	ND	5	UG/KG
SD-3102-0810-V	1	12-Sep-88	ND	5	UG/KG
SD-3104-0002-V	1	13-Sep-88	ND	5	UG/KG
SD-3104-0204-V	1	13-Sep-88	NĎ	5	UG/KG
SD-3104-0406-V	1	13-Sep-88	ND	5 .	UG/KG
SD-3104-0608-V	1	13-Sep-88	ND	5	UG/KG
SD-3104-0810-V	1	13-Sep-86	ND	5	UG/KG
SD-3102-0002-V	1	14-Sep-88	ND	5	ŲG/KG
SD-3103-0002-V	1	14-Sep-88	מא	5	UG/KG
SD-3103-0204-V	1	14-Sep-88	ND	5	UG/KG
SD-3103-0406-V	1	14-Sep-88	ND	5	UG/KG
SD-3103-0608-V	1	14-Sep-86	ND	5	UG/KG
SD-3103-0810-V	1	14-Sep-88	ND	5	ŲG/KG
SD-3201-0002-V	2	15-Sep-86	ND	5	UG/KG
SD-3201-0204-V	2	15-Sep-88	ИD	5	UG/KG
SD-3201-0406-V	2	15-Sep-88	ND	5	UG/KG
SD-3201-0608-V	2	15-Sep-88	ND	5	UG/KG
SD-3201-0810-V	2	15-Sep-88	ND	5	UG/KG
SD-3204-0002-V	2	15-Sep-86	ND	5	UG/KG
SD-3204-0204-V	2	15-Sep-88	ND	5	UG/KG
SD-3204-0406-V	2	15~Sep-88	мD	5	UG/KG
SD-3203-0002-V	2	21-Sep-88	ND	5	UG/KG
SD-3203-0204-V	2	21-Sep-88	ND	5	UG/KG
SD-3203-0406-V	2	21-Sep-88	ND	5	UG/KG
SD-3203-0608-V	2	21-Sep-88	NĐ	5	UG/KG
SD-3203-0810-V	2	21-Sep-88	ND	5	UG/KG
SD-3202-0002-V	2	22-Sep-88	ND	5	UG/KG
SD-3202-0204-V	2	22-Sep-88	ND	5	UG/KG
SD-3202-0406-V	2	22-Sep-88	ND	5	UG/KG
SD-3202-0608-V	2	22-Sep-88	ND	5	UG/KG

Sample ID *	Raffinate Pit	Date Sampled	TCE Value	Detection Limit	Units
SD-3202-0810-V	2	22-Sep~88	ND	5	υG/KG
SD-3301-0004-V	3	04-Jan-89	ND ·	5	υG/KG
SD-3301-0812-V	3	04-Jan-89	NĐ	5	UG/KG
SD-3302-0408-V	3	09-Jan-89	NĐ	5	UG/KG
SD-3302-0812-V	3	09-Jan-89	ND	5	υg/kg
SD-3101-071790	1	17-Jul-90	ND	19.0	UG/KG
SD-3102-071790	1	17-Jul-90	ND	12.0	UG/KG
SD-3103-071790	1	17-Jul-90	NĎ	10.0	UG/KG
SD-3201-071890	2	18-Jul-90	ND .	19.0	UG/KG
SD-3202-071890	2	18-Jul-90	ND	17.0	UG/KG
SD-3203-071890	2	18-Jul-90	ND	19.0	UG/KG
SD-3401-071890	4	18-Jul-90	ND	23.0	UG/KG
SD-3402-071890	4	18-Jul-90	ND	31.0	UG/KG
SD-3403-071890	4	18-Jul-90	ND	23.0	UG/KG
SD-3301-071990	3	19-Jul-90	ND	57	UG/KG
SD-3302-071990	3 .	19-Jul-90	ND	69	UG/KG
SD-3303-071990	3	19-Jul-90	ND	100	UG/KG
SD-3304-071990	3 .	19-Jul-90	ND	51	UG/KG
SD-3305-071990	3	19-Jul-90	ND	89	UG/KG
SD-3306-071990	3	19-Jul-90	ND	81.0	UG/KG
SD-3307-071990	3	19-Jul-90	ND	83.0	UG/KG
SD-3308-071990	3	19-Jul-90	23.0	110	UG/KG
SD-3101-0990	1	24-Sep-90	ND	16.0	UG/KG
SD-3102-0990	1	24-Sep-90	ND	10.0	UG/KG
SD-3103-0990	1	24-Sep-90	ND	11.0	UG/KG
SD-3201-0990	2	24-Sep-90	NĎ	21.0	ug/kg
SD-3202-0990	2	24-Sep-90	ND	16.0	UG/KG
SD-3203-0990	2	24-Sep-90	MD	20.0	UG/KG
SD-3401-0990	4	24-Sep-90	ND	9.00	UG/KG
SD-3402-0990	4	24-Sep-90	ND	23.0	UG/KG
SD-3403-0990	4	24-Sep-90	ND	14.0	UG/KG

^{*} Sludge ID's: Second numerical character is Raf. Pit number and the third and fourth numerical characters are location numbers.

Table 4: Concentrations of Trichloroethene (TCE) and 1,2-Dichloroethene (1,2-DCE) in Groundwater Wells at the Chemical Plant Area.

1,2 DGE 1,2 DGE 1,2 DGE 1,2 DGE 1,2 DGE TGE 1,2 DGE TGE TGE	MONITORING	April 1996		June 196		August 1996		Sept/Oct 1996		November 1996	96
No. No.		1,2-DCE	TCE	1,2-DCE	TCE	1,2-DCE	TCE	1,2-DCE	TCE	1,2-DCE	TCE
ND ND ND ND ND ND ND ND	GW- 2001							ND	QN		
National Colored Col	GW- 2002				•			ND	GN		
ND ND ND ND ND ND ND ND	GW- 2003							ON	QN		
NE NE NE NE NE NE NE NE	GW- 2005							GN	QN		
NE NE NE NE NE NE NE NE	GW- 2006							UD	2		
No. No.	GW- 2010							ND	£		
1	GW- 2012							ŒN	QN		
National Color	GW- 2013							16	(1)	16	(Z)
Many of the control of the c	GW- 2014							ΝD	ŒΝ		
ND ND ND ND ND ND ND ND	GW- 2018							ΝĎ	ďΝ		
NE	GW- 2019				1			ΩN	άN		
National Color	GW- 2021							ND	ΩN		
ND	OW. 2023							ΩN	Q.		
ND ND ND ND ND ND ND ND	GW- 2026							CIN	ΩN		
March Marc	GW- 2027							ND	QN		
ND ND ND ND ND ND ND ND	GW- 2032					(5)	ND	(3)	αN	ΩN	Q
ND ND ND ND ND ND ND ND	GW- 2033							ND	ΔN		
AD ND	GW- 2034				ï			ND	αN		
AD ND ND 22.7 766 39 9000 (14.0) 1050	GW- 2035							ND	αN		
22.7 766 39 9000 1650	GW- 2036		i					ATD.	ΩN		
22.7 766 39 9000 1050	GW- 2037							25	810	(2)	1100
	GW- 2038	7.22	766	39	0006			(14.0)	1050	6	0001

MONITORING	Anril 1996		June 196		Anens 1006		Sent/Oct 1996		November 1996	36
	1,2-DCE	TCE	1,2-DCE	TCE	1.2-DCE	TCE	1.2-DCE	TCE	1.2-DCE	TCE
GW- 2039							ND	QN.		
GW- 2040							ND	ND		
GW- 2041							ND	dN		
GW- 2044							ND	αN		
GW- 3003						•	ND.	αN		•
GW- 3006							GN	QN :		
GW-3013	:						GN	ND		
GW-3018		•	QN.	QN			tios of sub 96/01 beautings	due to soil		
GW-3023							renboval. ND	QN		
GW-3024					ND	48	(76.0)	8'65		
GW- 3025	ND	11.0	ND TN	15			MD	29		
GW- 3026			•				ND	ΩN		
GW-3027			QN.	ND.			QN.	QN.		
GW- 4001							QN.	(2.9)	ND	(4)
GW- 4002	-						QN	QN		
900+-MD			ND	ND						
GW- 4011							ND	ND		
GW- 4013							ND	ON.		
GW- 4016							ND	Q.		
GW: 4018							ND	ND		
GW- 4019							ΝD	ΩN		
GW- 4021							ND	QN		
GW- 4023							ND	ďΝ		
GW- 4024							ďΝ	ND		

MONITORING April 19	April 1996		961 aunt		August 1996		Sept'Oct 1996		November 1996	96
	1,2-DCE	TCE	1,2-DCE	TCE	1,2-DCE	TCE	1,2-DCE	TCE	1,2-DCE	TCE
GW- 4025							ND CN	Ð		
.SP-5303							QN.	ND		
SP-5304							ŒN.	ND		
SP-6301 Detection limits rended from 5 ug/l to 10 ug/l	randed fro) m 5 ma/	1 +0 10 05		Œ	ďΝ				
		,								

Table 5: Concentrations of 1,2-Dichloroethene (DCE) and Trichloroethene (TCE) in Sludge Samples Collected from Raffinate Pit 3, November, 1996.

LOCATION	рертн	DCE (ug/kg)	TCE (ug/kg)
3001	0 - 5 ft	ND	ND
3001	5 - 10 ft	ND	ND
3001	10 - 15 ft	ND	ND
3002	0 - 5 ft	ND	ND
3002	5 - 10 ft	ND	(12)
3002	10 - 15 ft	ND	ND
3003	0 - 5 ft	מא	ND
3003	5 - 10 ft	ND	ND
3003	10 - 15 ft	ND	ND
3004	0 - 5 ft	ND	ND
3004	5 - 10 A	ND	ND
3004	10 - 15 ft	ND	ND
3005	0 - 5 A	ND	ND
3005	5 - 10 ft	ИБ	ND
3005	10 - 15 ft	NID	ND
3006	0 - 5 ft	NID	ND
3006	5 - 10 ft	מא	מא
3006	10 - 15 ft	ND	ND

Detection Limits range from 30 ug/kg to 62 ug/kg.

Table 6 : Summary of Soil TCE and 1,2-DCE Analyses during 1996

Sample ID	Date Sampled	TCE Value	Detection Limit	Units
so-296008	19-Sep-96	N D	16	UG/KG
so-396311-05	02-Dec-96	ND	13	UG/KG
SO-396311-13	02-Dec-96	ND	14	UG/KG
SO-396311-17	02-Dec-96	ND	12	UG/KG
50-396311-22	02-Dec-96	NĐ	12	UG/KG
50-396311-27	03-Dec-96	ND	12	UG/KG
so-396311-36	03-Dec-96	ND	12	UG/KG
50-396312-04	03-Dec-96	ND	12	UG/KG
50-396312-12	03-Dec-96	ND	12	UG/KG
50-396312-17	03-Dec-96	ND	12	ŬG/KG
SO-396312-22	03-Dec-96	ND	12	UG/KG
SO-396312-30	04-Dec-96	ND	12	UG/KG
SO-396312-35	04-Dec-96	ИЪ	12	UG/KG
so-396321-05	05-Dec-96	ND	12	UG/KG
50-396321-11	05-Dec-96	ND	13	UG/KG
50-396321-15	05-Dec-96	ИД	13	UG/KG
50-396321-20	06-Dec-96	ND	13	UG/KG
s0-396321-30	06-Dec-96	ND	12	UG/KG
SO-396321-35	06-Dec-96	ND	12	UG/KG
SO-396321-40	06-Dec-96	ND	12	UG/KG
SO-396410-02	23-Nov-96	מא	13	UG/KG

Note: Sample ID: Numerical characters four through six are locations and last two numerical characters are depth codes.

